§6.3 Morphisms of Varieties

Def lee X and Y be varieties. A morphism from X at Y is a mapping $\varphi: X \rightarrow Y$ such that

1) φ is continuous
2) $\forall \cup \leftrightarrow Y, \forall f \in \Gamma(U) \Rightarrow \tilde{\varphi}(f):=f_{0} \varphi \in \Gamma\left(\varphi^{-1}(U)\right)$
"locally defined lay polynomial"
Def: An isomorphism of X with Y is a bijection $\varphi: X \rightarrow Y$ such that both φ and φ^{-1} are homomorphism.
affine variety $:=$ variety isomorphic to closed subvar. of some A^{n}
projection variety:= variety isomorphic to closed subvar. of some \mathbb{P}^{n}.

How to find if a maptry is a norphiom or not. Topen covering
Prop: $X, Y=$ varieties. $f: X \rightarrow Y$ mapping. $X=U_{\alpha} U_{\alpha}, \quad Y=U_{\alpha} V_{\alpha}$. $f_{\alpha}:=\left.f\right|_{U_{\alpha}}: U_{\alpha} \rightarrow V_{\alpha}$ Then $f=$ morphism $\Leftrightarrow f_{\alpha}=$ morphisin for all α
Pf: $\forall V$ \&oy $\Rightarrow f^{-1}(V)=\bigcup_{\alpha} f_{\alpha}^{-1}\left(V \cap V_{\alpha}\right) \underset{\alpha}{f_{\alpha}=\text { orn. }} \delta \Rightarrow f=$ cont

$$
\begin{aligned}
\tilde{f}(\Gamma(v))=\tilde{f}\left(\bigcap_{\alpha} P\left(v_{\alpha} \cap v\right)\right) & =\bigcap_{\alpha} \tilde{f}_{\alpha}\left(\Gamma\left(v_{\alpha} \cap v\right)\right) \\
& \subseteq \bigcap_{\alpha} \Gamma\left(U_{\alpha} \cap f^{-1}(v)\right)=\Gamma\left(f^{-1}(v)\right)
\end{aligned}
$$

Which ores can we deterrmine?:
Rop 2. $\{\varphi: X \rightarrow Y \mid$ morphism $\} \underset{1: 1}{\stackrel{X}{1} Y=\text { atfine }}\{\tilde{\varphi}: \Gamma(Y) \rightarrow P(X)$ |ringhom $\}$
Pf: WMA: $X \leftrightarrow \rightarrow \mathbb{A}^{n}, Y \leftrightarrow \rightarrow \mathbb{A}^{m}$
$\{\tilde{\varphi}: T(Y) \rightarrow P(X) \mid$ ring hom $\} \underset{\text { pip1 } \delta_{222} .}{\stackrel{: 1}{\Leftrightarrow}}\{\varphi: X \rightarrow Y \mid$ poly. map $\}$ $\{\varphi: X \rightarrow Y \mid$ morphism $\}$
ONTS: \forall paly map is a morphism
$\forall h \in P(U) \forall a \in \varphi^{-1}(U), P:=\varphi(a) \in U$

$$
\begin{aligned}
& h=\frac{f}{g} \in \Gamma(U)\left\{\begin{array}{l}
f=F \bmod I(H) \in \Gamma(Y) \quad s \cdot x . \quad g(p) \neq 0 . \\
g=G \bmod I(Y) \in P(Y)
\end{array}\right. \\
& \varphi=p d y \Rightarrow \tilde{\varphi}(f), \tilde{\varphi}(g) \in P(x) \Rightarrow \tilde{\varphi}(h)=\frac{\tilde{\varphi}(f)}{\tilde{\varphi}(g)} \in k(Y) \\
& \left.\tilde{\varphi}(g)\right|_{Q}=\left.g\right|_{\varphi(Q)}=g(P) \neq 0 \Rightarrow \tilde{\varphi}(h) \text { is defrad at } Q .
\end{aligned}
$$

$$
\Rightarrow \tilde{\varphi}(h) \in \Gamma\left(\varphi^{-1}(u)\right) \quad \Rightarrow v .
$$

can we cover any varieties with affine sibvaribties?
Prop 3. prog var. is a union of finite open attu vanities.
阿: $V \leftrightarrow \mathbb{P}^{n} . \quad \varphi_{i}: \mathbb{A}^{n} \cong U_{i} \cos \mathbb{P}^{n}$.
$V_{i}:=\varphi_{i}^{-1}(v) \leftrightarrow \mathbb{A}^{n}$ Then

1) $\left.\varphi_{i}\right|_{V_{i}}: V_{i} \xrightarrow{\cong} V \cap U_{i}$
2) $V=U_{i}\left(V \cap U_{i}\right)$

Prop 4. 1) Any closed subvariety of $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{r}}$ is a projective variety.
2). Any variety is isomorphic so an open subvariety of a projective variety.
of: 1) $\Rightarrow 2$): clean
1): ONTS: $\mathbb{P}^{m} \times \mathbb{P}^{n}$ is a prog var.
prob $4.28 \Rightarrow$ segre imbedding

$$
\begin{align*}
& s: \mathbb{P}^{m} \times \mathbb{P}^{n} \xrightarrow{1: 1} V \leftrightarrow \mathbb{P}^{m n+m+n} \\
& \left(\left[x_{0}: \cdots: x_{m}\right],\left[y_{0}: \cdots: y_{n}\right]\right) \mapsto\left(x_{0} y_{0}: \cdots: x_{0} y_{n}: \ldots: x_{m} y_{0}: \cdots: x_{m} y_{n}\right) \\
& \text { ONT: }\left.S\right|_{U_{0} \times U_{0}}: U_{0} \times U_{0} \xrightarrow{\cong} V \cap V_{00} \\
& \text { ONuS: } \Gamma\left(U_{0} \times U_{0}\right) \xrightarrow{\cong} \Gamma\left(V \cap V_{\infty}\right) \\
& \begin{array}{c}
\prime \prime \\
k\left[x_{1} \ldots x_{m}, y_{1}, \ldots y_{n}\right] \quad k\left[T_{10}^{\prime \prime}, \cdots, T_{m n}\right] /\left(\left\{T_{i_{k}}-T_{j 0} T_{0 k} \zeta_{j 3}\right), ~\right.
\end{array} \tag{7}
\end{align*}
$$

Rups. $V=$ affine, var, $f \in \Gamma|v\rangle \backslash\{0\}$.

$$
V_{f}:=\{p \in V \mid f(p) \neq 0\} \quad \text { Then }
$$

1) $V_{f} \quad \theta \rightarrow V$
2) $\Gamma\left(V_{f}\right)=\Gamma(v)\left[\frac{1}{f}\right]$

3). $V_{f}=$ attine var.

㫙: $W M A: V \subset \mathbb{A}^{n}, \quad I=I(v) \triangleleft k\left[x_{1} \cdots x_{n}\right]$

$$
\Gamma(v)=k\left[x_{1} ; \cdots x_{n}\right] / 1, f=F \bmod 1
$$

1). $V_{f}=V \cap\left\{P \in \mathbb{A}^{n} \mid F(P) \neq 0\right\} \cos V$
2). $\forall z \in \Gamma\left(v_{f}\right)$.

$$
J=\left\{G \in k\left[x_{1} \cdots x_{n}\right] \mid \bar{G} z \in T(v)\right\} \supseteq I(v)
$$

Pffpopz $\$_{23.4} \Rightarrow V(J)=$ pole set of $z \subseteq V$

$$
\stackrel{ }{z \in P(y)} \quad V(J) \subseteq V(F)
$$

$\left.\Rightarrow F^{N} \subseteq\right]$ for some $N \Rightarrow f^{N} Z=: a \in P(v)$

$$
\Rightarrow Z=\frac{a}{f^{N}} \in P(v)\left[\frac{1}{f}\right]
$$

3). $I^{\prime}:=\left(I, x_{n+1} F-1\right) \triangleleft k\left[x_{1}, \ldots, x_{n+1}\right]$

$$
V^{\prime}:=V\left(I^{\prime}\right) C_{\rightarrow} \mathbb{A}^{n+1}
$$

$$
\begin{aligned}
& \alpha: k\left[x_{1}, \cdots x_{n+1}\right] \longrightarrow P\left(v_{f}\right) \\
& x_{i} \longmapsto \bar{x}_{i} \quad(1 \leqslant i \leq n) \\
& x_{N+1} \longmapsto \frac{1}{f} \\
& \operatorname{Prt} 6.3 \Rightarrow R[x] /(x f-1) \cong R\left(\frac{1}{f}\right] \quad \bar{x} \longleftarrow \frac{1}{f} \quad x \mapsto \frac{1}{f} \\
& \Rightarrow \operatorname{ken} \alpha=I^{\prime} \\
& I^{\prime} \leq \text { kund dea } \\
& \Sigma:=\operatorname{ker} \alpha \backslash I^{\prime} \quad \text { suppose } \Sigma \neq \phi \text {. } \\
& \text { Let } g_{=1} r_{0}+r_{1}+\cdots+r_{a x} d^{d} \in \sum_{\text {banid }} \text { byan } \\
& \begin{aligned}
\Rightarrow \alpha(g)=0 & \Rightarrow f^{d} r_{0}+\cdots+f_{r a t}+k_{0} \\
& \Rightarrow f_{1}
\end{aligned} \\
& \Rightarrow \mathrm{flra} \\
& \Rightarrow g^{\prime}=g-\frac{r_{r}}{f}(x-1) \in \varepsilon \text { 虎 } \\
& \alpha \Rightarrow \bar{\alpha}: \Gamma(V) \cong \Gamma\left(V_{f}\right) \Rightarrow \varphi: V_{f} \leftrightharpoons V^{\prime} \leftrightarrow A^{n+1}
\end{aligned}
$$

